

Development and First Test of the US-MDP 15 T Nb₃Sn Dipole Demonstrator MDPCT1

Fermilab APT seminar August 15, 2019

Alexander Zlobin

US Magnet Development Program
Fermi National Accelerator Laboratory

Outline

 In June 2019 the HFM group at Fermilab has tested a new accelerator dipole magnet based on Nb₃Sn superconductor, which produced a world record field of 14.1 Tesla at 4.5 K.

Outline

- Magnet design and analysis
- Magnet technology
- Quench performance (training)
- Field quality measurements and analysis
- Conclusions and next steps

Acknowledgment

<u>FNAL</u>: I. Novitski, E. Barzi, J. Carmichael, G. Chlachidze, J. DiMarco, V.V. Kashikhin, S. Krave, C. Orozco, S. Stoynev, T. Strauss, M. Tartaglia, D. Turrioni, G. Velev, A. Rusy, S. Jonhson, J. Karambis, J. McQueary, L. Ruiz, E. Garcia

LBNL: S. Caspi, M. Juchno, M. Martchevskii

CERN: D. Schoerling, D. Tommasini

FEAC/UPATRAS: C. Kokkinos

US-MDP: G6 and TAC

This work was supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and the US-MDP.

Introduction

- The 15 T dipole demonstrator project was initiated in 2015 at Fermilab in response to recommendations of the Particle Physics Project Prioritization Panel (also called P5) and HEPAP Accelerator R&D subpanel.
- In June 2016, after the Office of High Energy Physics at US-DOE created the national MDP to integrate accelerator magnet R&D in the United States and coordinate it with the international effort, this project became a key task of the MDP.
- In 2017 this effort received support also by the EuroCirCol program, making it a truly International endeavor.

15 T dipole program goals

- Demonstration of 15+ T field level with Nb₃Sn superconductor
- Study and optimization of
 - magnet quench performance and mechanics
 - o field quality
 - o quench protection
 - Cost optimization
- Record Nb₃Sn dipole magnets:
 - D20 (LBNL, 1997): B_{max}=13.5 T @1.9K, 12.8 T @4.4K
 - HD2 (LBNL, 2008): B_{max}=13.8 T @4.5K

15 T Dipole design selection

Coil (V.V. Kashikhin et al.):

- 60-mm aperture
- 4-layer graded cos-theta coil
- Selection criteria: B_{max}, FQ, forces, protection

Mechanical structure (I. Novitski et al.):

- Design 1: SS C-clamps and 20mm thick SS skin
- Design 2: Al I-clamps and 12mm thick SS skin
- Criteria: coil stress and strain

Nb₃Sn strands and cables

Max. HT Temperature (48 h), °C

Courtesy E. Barzi and D. Turrioni

Magnet conductor limit

Magnet <u>conductor limit</u> for the wire $J_c(12T,4.2K)\sim 2.6 \text{ kA/mm}^2$

- B_{ap}=15.3T @4.5K
- B_{ap}=16.7T @1.9K

Magnet mechanical limit

Magnet <u>design limit</u> is determined by the coil maximum stress and the pole turn separation from poles

independent FNAL and FEAC analysis

Courtesy I. Novitski

Mechanical Model Tests

Courtesy I. Novitskiy and C. Orosco

MM Goals:

- Test brittle yoke and clamps
- Validate the mechanical analysis
- Develop the coil pre-stress targets

margin

Test 300Kmax

0.3

0.35

Test 77Kmax

- FEA 300K

- FEA 77K

0.25

Coil fabrication, measurements and instrumentation

Coil winding and curing using ceramic binder

Coil reaction

Coil lead splicing and epoxy impregnation

Coil size control, accuracy ~10 microns

Coil instrumentation

Coil fabrication, measurement and instrumentation time
 ~3 months

Witness sample data and magnet SSL

- Witness sample data are close to the target I_c
- Good reproducibility of witness sample data for IL and OL coils
- Magnet short sample limit: 15.16 T @4.5K and 16.84 T @1.9K

Coil interfaces analysis and optimization

Coil assembly and preload scheme

TAC recommendations

TAC members:

Andy Lankford (UCI, Chair), Giorgio Apollinari (Fermilab), Joe Minervini (MIT),
 Mark Palmer (BNL), Davide Tommasini (CERN), Akira Yamamoto (KEK & CERN)

Report of the Technical Advisory Committee for the U.S. Magnet Development Program

February 22, 2019

Recommendations:

- Maintain as the priority for the cos-theta approach using the clamped mechanical structural design to realize a field of about 14 T, with special attention to mechanical stress management and control.
- Continue with demonstration of 15 T cos-theta performance only after the review of the 14 T magnet test results and feedback from the international workshop.

Target coil prestress for the first assembly

Conservative pre-stress:

S_{max} at all steps <150 MPa

Inner Pole at 13T

Gap=0.003mm

Gap=0.037mm

Courtesy I. Novitski

ANSYS

7 2019

.165E+00

.315E+08

.455E+CD

. 51 SE+08

.766E+08

.915E+00

107E+09

122E+09

139E+09

-.330E-0

-.050E-05

-.463E-05

Coil assembly, yoking and skinning

Magnet transportation and test preparation

Test preparation ~1.5 months

Instrumentation

Voltage taps on all coil layers

 one dead and one inactive (both by-passed by using longer segments)

Strain Gauges

- o skin gauges: OK
- o bullet gauges: two (on different bullets) dead
- pole gauges: layer 3 and 4 all gone or inactive, layer 1 are OK
- coil gauges: one switched off (problems during ramp up), another off for technical reasons (could be recovered if needed)

Quench antennas

only sensitive to quenches in Layer 1 (didn't happen yet)

Acoustic sensors

not useful data (very noisy signal)

Magnet training

- Only 2 quenches in IL coil 2, no quenches in coil 3
- OL quenches are equally distributed between coil 4 and coil 5
- Quenches are in both layers 3 and 4 mostly in the LE
- Highest achieved quench current 9758 A at 4.5 K
- Magnet quenching was stopped after reaching the goal of ~14 T to avoid coil damage

Magnetic measurements

TF analysis and calibration

Courtesy I. Novitski

- 2D and 3D analysis has been updated based on the actual yoke material properties and the final magnet geometry
- Measurements have been verified with NMR probes (provided by GMW)

Courtesy T. Strauss and M. Tartaglia

Maximum field achieved

- First quenches above 11 T
- Maximum bore field at 4.5 K
 - o measured 14.10±0.04 T
 - o calculated (COMSOL, V.V. Kashikhin) 14.112 T

Harmonics analysis

Predictions: V.V. Kashikhin et al., 2016

Geometrical harmonics at R_{ref} =17 mm (I=2.5 kA)

n	2	3	4	5	6	7	8	9	10
b _n	0.8	8.8	-0.4	0.7	0.1	1.0	0.0	0.2	-0.4
a _n	-2.2	-3.5	0.3	0.1	0.1	0.1	-0.1	0.2	-0.3

Summary and next steps

- 1-m long 15 T dipole model (MDPCT1) has been developed, fabricated and first tested at Fermilab (June 2019)
- The goals of the first test have been achieved
 - graded 4-layer coil design, innovative support structure and magnet fabricated procedure tested
 - O B_{max} = 14.10±0.04 T at 1.9 and 4.5 K <u>record field at 4.5 K for accelerator magnets!</u>

Next steps

- Magnet re-assembly
 - coil pre-load increase to the level sufficient to achieve the goal of 15 T
 - improve instrumentation
- Magnet second test in the fallwinter of 2019

Record Nb₃Sn magnet parameters

Parameter	D20 (LBNL)	HD2 (LBNL)	FRESCA2 (CERN)	MDPCT1 (FNAL-MDP)
Test year	1997	2008	2017	2018 (plan)
Max bore field [T]	13.35 (14.7*)	15.4	16.5 (18*)	15.2 (16.5*)
Design field B _{des} [T]	13.35	15.4	13	15
Design margin B _{des} /B _{max}	1.0 (0.9*)	1.0	0.8 (0.7*)	0.96 (0.89*)
Achieved B _{max} [T]	12.8 (13.5*)	13.8	13.9 (14.6)	14.1
St. energy at B _{des} [MJ/m]	0.82	0.84	4.6	1.7
F _x /quad at B _{des} [MN/m]	4.8	5.6	7.7	7.4
F _y /quad at B _{des} [MN/m]	-2.4	-2.6	-4.1	-4.5
Coil aperture [mm]	50	45	100	60
Magnet (iron) OD [mm]	812 (762)	705 (625)	1140 (1000)	612 (587)

Nb₃Sn accelerator magnet history

- 1967 the first Nb₃Sn quadrupole model
- 1989 the first 9.5 T dipole model
- 2018 record dipole field of 14.6 T (FRESCA2, CERN)

The book

- ~450 pages on Nb₃Sn accelerator magnet (dipoles) designs, technologies and performance
- written by world experts in Nb₃Sn accelerator magnet technologies
- open access
- available online in August 2019

Particle Acceleration and Detection

Editors

Daniel Schoerling and

Alexander Zlobin

Nb₃Sn Accelerator Magnets

Designs, Technologies, and Performance